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Abstract. Fire frequency affects vegetation composition and successional pathways;
thus it is essential to understand fire regimes in order to manage natural resources at broad
spatial scales. Fire history data are lacking for many regions for which fire management
decisions are being made, so models are needed to estimate past fire frequency where local
data are not yet available. We developed multiple regression models and tree-based (clas-
sification and regression tree, or CART) models to predict fire return intervals across the
interior Columbia River basin at 1-km resolution, using georeferenced fire history, potential
vegetation, cover type, and precipitation databases. The models combined semiqualitative
methods and rigorous statistics. The fire history data are of uneven quality; some estimates
are based on only one tree, and many are not cross-dated. Therefore, we weighted the
models based on data quality and performed a sensitivity analysis of the effects on the
models of estimation errors that are due to lack of cross-dating. The regression models
predict fire return intervals from 1 to 375 yr for forested areas, whereas the tree-based
models predict a range of 8 to 150 yr. Both types of models predict latitudinal and elevational
gradients of increasing fire return intervals. Examination of regional-scale output suggests
that, although the tree-based models explain more of the variation in the original data, the
regression models are less likely to produce extrapolation errors. Thus, the models serve
complementary purposes in elucidating the relationships among fire frequency, the predictor
variables, and spatial scale. The models can provide local managers with quantitative in-
formation and provide data to initialize coarse-scale fire-effects models, although predic-
tions for individual sites should be treated with caution because of the varying quality and
uneven spatial coverage of the fire history database. The models also demonstrate the
integration of qualitative and quantitative methods when requisite data for fully quantitative
models are unavailable. They can be tested by comparing new, independent fire history
reconstructions against their predictions and can be continually updated, as better fire history

data become available.
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INTRODUCTION

Predicting the occurrence and effects of broad-scale
disturbances, particularly fires, will be an important
challenge for scientists and resource managers in com-
ing decades. Significant changes in fire severity and
fire size are predicted for many ecosystems as a result
of land-use change, climatic change, and fire exclusion
(Green 1989, Turner et al. 1989, Agee 1994, Habeck
1994, Baker 1995). Although large-scale vegetation
change is constrained primarily by climate (Woodward
1987, Woodward and McKee 1991), change in fire re-
gimes in response to climatic change could signifi-
cantly alter vegetation patterns, because fire often pro-
vides critical constraints on vegetation (Fosberg et al.
1992, Baker 1995, Neilson 1995, McKenzie et al.
1996a). Thus, simulation models used to predict broad-
scale vegetation change need to incorporate fire effects.
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Most empirical research on the ecological effects of
fire has been conducted at the stand level, but conclu-
sions are often extrapolated to broader scales (Mc-
Kenzie et al. 1996b).

Mechanistic, or process-based models are typically
used for simulating fire effects (Schmoldt et al. 1999).
Most of these have been constructed to represent stand-
level processes and assume homogeneity of crucial in-
puts over the spatial scale to which they are applied
(Rothermel 1972, van Wagner 1977, 1993, Kercher and
Axelrod 1984, Peterson and Ryan 1986, Keane et al.
1989, 1994). Spatially explicit mechanistic models that
are applied at broader scales require large amounts of
empirical data as inputs (e.g., Keane et al. 1996¢, Fin-
ney 1998), and are sensitive to the scale of resolution
to which the raw data are aggregated. Also, error prop-
agation rapidly becomes problematic in complex nat-
ural systems (Cale 1995, Pahl-Wostl 1995). In partic-
ular, spatial heterogeneity is a significant source of ag-
gregation error through its effects on disturbance
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spread, fire severity, and aspects of landscape pattern
(Kessell 1976, Baker 1989, Green 1989, Turner and
Romme 1994).

The resolution, extent, and spatial pattern of empir-
ical data often limit the ability to aggregate spatial data
for modeling fire effects (McKenzie 1998). Geosta-
tistical interpolation (Isaaks and Srivastava 1989) and
other methods of mapping in the presence of spatial
autocorrelation such as structure functions (Legendre
1993) or stochastic simulation (Rossi et al. 1993) re-
quire covariance properties that are often lacking in
coarse-scale empirical data. However, empirical data
generally are not adequate for process-based modeling
across broad spatial scales (McKenzie et al. 1996b,
Schmoldt et al. 1999). Coarse-scale modeling may re-
quire semiqualitative methods, including qualitative
assessments of aggregation errors (Schmoldt and
Rauscher 1995, Keane et al. 1996a, McKenzie 1998).

Fire frequency is a basic parameter in simulation
models of fire effects on vegetation. It may be fixed at
the beginning of model runs (Kercher and Axelrod
1984, Keane et al. 1989), or sampled at random from
a probability distribution (Baker 1995, Boychuk et al.
1997). Fire frequency reconstructions provide local in-
formation, and models that use them as baseline data
assume homogeneity of fire frequency over long tem-
poral scales and over the geographic range at which
they are applied.

Assembling fire history data, like most field-based
research, is expensive and time consuming. There are
several methods for establishing mean or median fire
return intervals, and each has a different expected value
for the same raw data (Agee 1993, Johnson and Gutsell
1994). The method of choice usually is determined by
specific local objectives. Thus, there is a lack of con-
sistency of methods and quality among fire history
studies, and the grain and extent of studies vary sig-
nificantly (Heyerdahl et al. 1995).

The dominant vegetation in forest ecosystems is of-
ten very sensitive to changes in the mean, variance,
and distribution of fire return intervals. For example,
forest development proceeds along different succes-
sional pathways in response to different sequences of
time-since-fire (Cattelino et al. 1979, Frelich and Reich
1995, Clark 1996). Thus local information about fire
frequency distributions is critical to maintain accuracy
in dynamic fire modeling. Fire regimes in western
North America appear to vary along gradients of tem-
perature and moisture stress (Agee 1993). Gradients
vary with the steepness of topography and degree of
terrain dissection, producing significant variability in
fire frequency and severity within vegetation types
(e.g., Agee et al. 1990, Morrison and Swanson 1990).
At meso- and fine scales, it is difficult to associate fire
regimes closely with particular vegetation types in for-
est classifications. However, broad-scale differences in
fire frequency are evidently associated with different
geographic areas and distinct environmental conditions
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(Agee 1993, Hann et al. 1997, 1998). A coarse-scale
model of fire frequency should incorporate sources of
variability at multiple scales, including large-scale
trends, if any, associated with latitude and longitude,
climatic and elevational gradients, and any variation
that can be associated with different vegetation types.
The range of spatial and temporal scales will depend
on the resolution and extent of variables in the model
database.

In this paper, we present statistical models for pre-
dicting coarse-scale patterns of fire frequency in the
Interior Columbia River basin (ICRB), using a fire his-
tory database (hereafter FHDB) from the western Unit-
ed States (Heyerdahl et al. 1995). The ICRB coarse-
scale assessment has produced regional maps of fire
regimes (both frequency and severity) for the ICRB
(Keane et al. 1996a, Morgan et al. 1996, Hann et al.
1997). Predicted fire frequency in these maps is closely
linked to the vegetation classifications produced by the
ICRB assessment; specifically, broad ranges of fire fre-
quency are predicted for each type in the classifications
(Morgan et al. 1996). We take a different approach,
using empirical methods to test the relationships be-
tween fire frequency and both vegetation types and
environmental gradients. At most stages in the mod-
eling process, the quality and quantity of data permitted
the use of rigorous statistical methods; at one point, a
heuristic approach was necessary to reconcile quali-
tative vegetation classifications with numeric variables.

Our principal objectives are to evaluate the effec-
tiveness of different modeling strategies for extrapo-
lating model results to broad spatial scales, and to ex-
amine the sensitivity of model predictions and inter-
pretation to uncertainties in the databases. In the pro-
cess, we develop fire frequency coverages for forested
areas of the ICRB. Although fire severity is an equally
important component of fire regimes, and has been the
subject of coarse-scale modeling efforts (Lenihan et al.
1998), quantitative modeling of fire severity requires
a totally different approach, and we do not address it
here. We discuss the applicability of our methods to
the problem of modeling coarse-scale fire effects, the
advantages and disadvantages of our models compared
to those from the ICRB assessment, and potential im-
provements in models and databases that would make
broad-scale predictions more accurate.

METHODS
Study area

Quigley et al. (1996) have defined the ICRB as those
portions of the Columbia River Basin inside the United
States east of the crest of the Cascade Mountains in
Washington and Oregon, and portions of the Klamath
River Basin in California and the Great Basin in
Oregon, Utah, and Nevada. The ICRB covers more than
58 million ha, 46% of which is in forested vegetation.
Dominant tree species range from ponderosa pine (Pi-
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nus ponderosa) and limber pine (Pinus flexilis) at lower
treeline to mountain hemlock (Tsuga mertensiana), En-
gelmann spruce (Picea engelmannii), subalpine fir
(Abies lasiocarpa), and whitebark pine (Pinus albi-
caulis) at upper treeline. Elevation of the forested areas
ranges from 50 to 3700 m, and mean annual precipi-
tation ranges from 130 to 3500 mm. Climate in the
ICRB is a result of the interaction of three air masses:
1) moist marine air from the west, 2) continental air
from the east and south, and 3) dry arctic air from the
north (Ferguson 1997). Summer drought, caused by a
seasonal northward shift in the jet stream in conjunc-
tion with high pressure over coastal Oregon and Wash-
ington, is common, even in areas with high annual
precipitation. Severe fire events, particularly in moist,
high-elevation forests, are usually associated with syn-
optic weather patterns that drive the interactions among
the three air masses (Agee 1993, Ferguson 1997,
Schmoldt et al. 1999).

Land use in the ICRB is divided between public
(58%) and private (42%) ownership; most forested land
is under the jurisdiction of the USDA Forest Service,
and the Basin contains 29% of the area covered by
wilderness within the contiguous United States (Hann
et al. 1997). Conversion of grasslands for agriculture
began in the late 19th century, and livestock grazing
began in the 1860s. Effective suppression of low- to
moderate-severity wildland fires began in the 1930s.
Agriculture, grazing, and fire suppression are respon-
sible for major changes in vegetation in both forested
and nonforested areas during the last 50-60 yr (Hann
et al. 1997).

Geographic databases

The ICRB Landscape Assessment (Hann et al. 1997)
and simulation modeling efforts to predict future veg-
etation (Keane et al. 1996a) produced a wealth of GIS
coverages, both at a coarse scale (entire ICRB) and a
mid-scale (watersheds within national forests [Hess-
burg et al. 1999]). The coarse-scale coverages provided
a geographic template for our model predictions, and
a source of predictor variables.

Fire history database.—Our response variable was
fire frequency, expressed as the expected (mean) fire
return interval (FRI). Although the mean is only one
type of measure of central tendency, and the most sen-
sitive to outliers, there are several reasons why we
chose it, rather than other measures (e.g., median or
mode), as our response variable: 1) many of the fire
history studies we used report only the mean (Heyer-
dahl et al. 1995); 2) the mean is the best way to compare
FRIs computed by different methods (for example, a
natural fire rotation translates more easily to a mean
than to a median or mode); 3) the mean is the most
easily integrated into simulation models, where fire fre-
quency is often a random variable with a specified mean
and variance (Schmoldt et al. 1999); and 4) there is
some evidence that the mean is less sensitive than the
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other measures to errors from lack of cross-dating tree
ring records (D. McKenzie and A. Hessl, unpublished
data).

From the FHDB, we extracted the following vari-
ables for all fire history sites within the ICRB as defined
by the maps included in the integrated assessment: 1)
fire return interval (response variable: mean = 50.7 yr,
range = 6-419 yr), and 2) elevation and geographic
coordinates from an Albers projection (predictor var-
iables).

The fire history data vary in quality. Most are not
accurately cross-dated, and more than half of the re-
constructions use fewer than ten trees. Also, beginning
and ending dates vary, admitting possible confounding
effects from changing climatic regimes and human ac-
tivities. The methods employed for calculating fire fre-
quency also differ, and include point estimates, com-
posite fire intervals (CFls), and natural fire rotation
(NFR), or fire cycle computation (Agee 1993, Johnson
and Gutsell 1994). The choice of which sites to include
in a model involves (1) a trade-off between better mod-
el precision, if only the highest quality reconstructions
are included (and criteria for inclusion would be partly
subjective), and (2) better geographic coverage and
representation of high-severity fire regimes, if all re-
constructions are included. The confounding effects are
likely to be worst for sites experiencing high-severity
regimes; these are already underrepresented in the da-
tabase, and therefore all are important. Also, geograph-
ic coverage would be greatly reduced if these sites were
eliminated, and we needed as broad a coverage as pos-
sible to make predictions for the ICRB.

We therefore decided to develop two model data-
bases; the first would have the advantage of larger sam-
ple size and the second the advantage of greater ho-
mogeneity: 1) “full data” included as many of the sites
as were amenable to minimal standardization, and 2)
“reduced data’’ used a subset of the sites from the first
set in which fire frequency had been computed from
CFlIs (the most common method) and from at least two
trees. Different results from modeling these two da-
tabases could also be compared as a test of the sen-
sitivity of model behavior to inclusion/exclusion of
sites.

The full data database included all 192 sites within
the ICRB at which fire frequency had been estimated
for areas of <40 ha (Heyerdahl et al. 1995). We em-
ployed the following temporal standardization to min-
imize the confounding effects of climatic variation and,
specifically, fire exclusion in the 20th century. For all
sites whose histories extended before 1700 and after
1920 (before the period of successful fire suppression
in the ICRB), and which included fire dates, we re-
computed FRIs based on the years 1700-1920. Sites
for which this calculation was impossible (i.e., no fire
dates supplied by authors) were dropped. The exception
to this was sites with only two fires (e.g., one fire in
1500 and another in 1919). Sites with only one tree
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were retained, but given a smaller importance value in
the models (see Methods: Model development). Non-
cross-dated sites were also retained because they were
the majority of sites (157 of 192), but were the basis
of a sensitivity analysis of the effects of cross-dating
errors on the models (see Methods: Sensitivity analy-
sis). After the temporal standardization, the full data
contained 185 sites. The reduced data database con-
sisted of all sites from the full data in which FRI had
been computed by CFI from at least two trees. Only
90 sites fulfilled this criterion.

We extracted predictor variables from the FHDB for
which there are concomitant variables in the ICRB geo-
graphic databases (elevation and Albers north and east
coordinates), because we were using the model to make
predictions for the entire ICRB. We then created a point
coverage in ARC-INFO (ESRI 1997) of the fire history
site locations in the ICRB, using the Albers projection
(Fig. 1).

Other predictors were taken from the following da-
tabases:

1) VEG database. Three types of vegetation cover-
ages (ARC-INFO, GRID module, 1-km resolution)
were produced for the ICRB coarse-scale simulation
effort using satellite imagery and selected comparisons

Fire history sites in the interior Columbia River basin. Many of the sites completely overlap at the resolution of

with the midscale coverages derived from photointer-
pretation and ground truthing (Keane et al. 1996q,
Hann et al. 1997, Hessburg et al. 1999): 1) historical
potential vegetation (PVTH), derived from biophysical
parameters including topography, climate, and geo-
morphology; and 2) historical (~1930); and 3) current
dominant cover types (COVH and COVC), derived
from the Society of American Foresters classification
(Eyre 1980). Each coverage contains both forested and
nonforested vegetation types, but we applied model
predictions only to the former (Table 1), because the
reconstructions in the fire history database were from
forested sites only.

2) PRECIP database. Mean annual and summer
(June-September) precipitation over the years 1961—
1990 (4-km resolution GRID coverage) for the conti-
nental United States produced by the PRISM model
(Daly et al. 1994). No coverages for the period 1700—
1920 are available at this or finer resolutions, therefore
we had to assume that spatial patterns of variation in
precipitation for 1961-1990 correspond to those from
the historical period.

To extract predictors from the VEG database, we
overlaid each vegetation coverage with the fire history
point coverage, and assigned each fire history site the
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TaBLE 1. Forested vegetation types in the Interior Columbia River basin.
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Potential natural vegetation types

Cover types

Aggregated Kiichler types

Interior ponderosa pine

Dry Douglas-fir with ponderosa pine
Dry Douglas-fir without ponderosa pine
Pacific pine/Sierra mixed conifer
Dry grand fir

Oregon white oak

Limber pine

Moist Douglas-fir

Grand fir E. Cascades

Grand fir inland

Lodgepole pine Oregon
Mountain hemlock/Shasta red fir
Aspen

Cedar/hemlock E. Cascades
Cedar/hemlock inland

Pacific silver fir

Mountain hemlock E. Cascades
Mountain hemlock inland
Lodgepole pine Yellowstone
Spruce—fir with aspen

Spruce—fir without aspen
Spruce-fir wet

Interior ponderosa pine

Pacific ponderosa pine

Sierra mixed conifer

Oregon white oak

Limber pine

Mixed conifer woodland

Douglas-fir

Grand fir/white fir

Western larch

Lodgepole pine

Aspen

Western white pine

Shasta red fir

Western hemlock/western
red cedar

Pacific silver fir

Mountain hemlock

Engelmann spruce/
subalpine fir

Whitebark pine

Whitebark pine/subalpine
larch

Ponderosa pine
Mixed conifer
Western oakwoods
Great Basin pine
Lodgepole pine
Douglas-fir
Cedar/hemlock/pine
Silver fir/Douglas-fir
Western fir/spruce

Spruce-fir WBP > LPP¥
Spruce-fir LPP > WBP%

Note: Aggregated Kiichler types were determined by combining cover types according to McKenzie et al. (1996a).

+ More whitebark pine than lodgepole pine.
+ More lodgepole pine than whitebark pine.

vegetation type of the pixel into which it fell. For the
PRECIP database, because the pixel values are discrete
approximations of a continuous surface, we used the
LATTICESPOT command in GRID to obtain, for each
fire history point, a distance-weighted average for the
pixel it was in plus the four adjacent pixels.

Quantifying vegetation types

The initial model matrix comprised a mix of qual-
itative and quantitative data. Vegetation types could
be modeled as categorical variables, but this would
eliminate the possibility of extrapolating the model to
forested sites in the ICRB that had vegetation types
not represented in the model database. We developed
a qualitative clustering procedure to assign numerical
values to them, based on the type of fire regime we
expected to be associated with each type. This process
was analogous to testing various transformations of
predictor variables to identify those with the strongest
correlations with the response (Neter et al. 1990).

Within each classification (potential vegetation
types [PVTH] and cover types [COVH and COVC]),
we ranked the vegetation types initially according to
what we expected to be their average FRIs. We also
assigned a ‘‘distance” between each pair of adjacent
types, representing qualitatively the ecological dis-
tances, with respect to fire regime, between them. The
resulting hierarchical model is represented as a den-
drogram (Figs. 2 and 3), an ordered classification of
vegetation types that can be viewed at several levels
of aggregation (just as, for example, organisms can

be viewed at several taxonomic levels). Unlike den-
drograms produced from cluster analysis, the order of
the leaves is fixed. Beginning at the top of the den-
drogram, each type (represented at the leaves of the
dendrogram) was assigned a dimensionless numerical
value, beginning with 1, based on its distance in the
dendrogram from the previous type (Tables 2 and 3).
This distance was calculated as the level of aggre-
gation reached in the shortest traverse from one type
to the next along branches of the dendrogram. For
example, in Fig. 3, the path between “‘Dry grand fir”
and “‘Oregon white oak” reaches aggregation level 4,
thus the numerical value ‘““Oregon white oak,”’ at level
0, is 8 (from the previous value for “Dry grand fir”’)
plus 4 (from the aggregation level reached by the path
between the two types) = 12 (Table 2). As the level
of aggregation increased (moving from left to right in
the dendrogram: Figs. 2 and 3), numerical values be-
came closer together.

At completion of this process, each vegetation type
(PVTH, COVH, COVC) had either three or four nu-
merical values associated with it (Tables 3 and 4). We
then compared the dendrograms to variants (created by
rotating leaves) with respect to correlations (Pearson’s
R) between the resulting numerical values and the ob-
servations of fire frequency in the FHDB. The final
dendrograms exhibited the highest correlations at ag-
gregation levels 0 and 1 (Figs. 2 and 3) of any of the
variants we examined. We assigned only integer values
to each vegetation type, but we explored nonlinear
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Interior ponderosa pine ‘ 2 3

Dry Douglas-fir w/ ponderosa pine

Dry Douglas-fir w/o ponderosa pine

Pacific pine/Sierra mixed conifer

Dry grand fir

Oregon white oak

Limber pine

Moist Douglas-fir

Grand fir E. Cascades

Grand fir inland

Lodgepole pine Oregon

Mountain hemlock/Shasta red fir

Aspen

Cedar/hemlock E. Cascades

Cedar/hemlock inland

Pacific silver fir

Mountain hemlock E. Cascades

Mountain hemlock inland

r Lodgepole pine Yellowstone

| Spruce—fir w/ aspen

Spruce—fir w/o aspen

— ————

Spruce—fir wet

Spruce—fir WBP>LPP
Spruce—fir LPP>WBP

LHTTTTTTﬁTTTTTTrrTTTTﬁJ

Whitebark pine/subalpine larch N

Whitebark pine/subalpine larch S

[ S}
w

F1G. 2. Dendrogram of forested potential vegetation types (PVTs) in the Interior Columbia River basin, arranged so that
proximity in the dendrogram represents similarity in fire regime. Aggregation levels correspond to those in Table 2.

transformations of them during model development to eling. Each procedure described below was performed
optimize their predictive power. on both the full data and reduced data.
Fire, like many disturbances, is a contagious process
(Turner et al. 1989), meaning that fires that affect one
We used Splus, version 3.3 for Windows and version location (pixel) are likely to affect nearby pixels. Thus,
3.4 for UNIX (Mathsoft 1994) for the statistical mod- with enough data points, one would expect some au-

Model development
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Interior ponderosa pine

Pacific ponderosa pine

Sierra mixed conifer

O

Oregon white oak

Limber pine

Mixed conifer woodland

Interior Doulas-fir
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Grand fir/white fir

Western larch

Lodgepole pine

Aspen

Western white pine

Shasta red fir

Western hemlock/western redcedar

Pacific silver fir

Mountain hemlock

Engelmann spruce/subalpine fir

Whitebark pine

TTTTTTTTL#——TTT

I iririraaraaririraritriairirairiri1riar

Whitebark pine/subalpine larch

FiG. 3.

o\_’_
—
[\8}

Dendrogram of forested vegetation cover types (COVs) in the interior Columbia River basin, arranged so that

proximity in the dendrogram represents similarity in fire regime. Aggregation levels correspond to those in Table 3.

tocorrelation structure to be evident when examining
mean FRIs at fire history sites, depending on the nature
of barriers to fire spread between the sites. We exam-
ined the spatial covariance among FRIs by computing
variograms for clusters of data points (selected visually
from Fig. 1), assuming that if spatial dependence was
not evident at any scale within the clusters we could
assume independence between sites in different clus-
ters. Variogram models could not be parameterized, due
to the high variability in FRI between neighboring

points. Thus, even though we could not test for spatial
independence of the fire regimes represented by the
FRIs, we were able to assume statistical independence
in the response variable. We then searched for optimal
models of two types: 1) a weighted multiple regression
of FRI on predictor variables (Neter et al. 1990), and
2) a weighted tree-based (nonparametric) model of FRI
on predictor variables (Breiman et al. 1984). In mul-
tiple regression, a weighted sum of squares of residuals
was minimized, whereas in the tree-based models,
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TABLE 2. Numerical values at four levels of aggregation for potential vegetation types, used
to create numerical predictors in the model database.

Potential vegetation type None One Two Three
Interior ponderosa pine 1 1 1 1
Dry Douglas-fir with ponderosa pine 2 1 1 1
Dry Douglas-fir without ponderosa pine 5 3 2 1
Pacific pine/Sierra mixed conifer 7 4 2 1
Dry grand fir 8 4 2 1
Oregon white oak 12 7 4 2
Limber pine 14 8 4 2
Moist Douglas-fir 19 12 7 4
Grand fir E. Cascades 21 13 7 4
Grand fir inland 22 13 7 4
Lodgepole pine Oregon 25 15 8 4
Mountain hemlock/Shasta red fir 26 15 8 4
Aspen 27 15 8 4
Cedar/hemlock E. Cascades 33 20 12 7
Cedar/hemlock inland 34 20 12 7
Pacific silver fir 36 21 12 7
Mountain hemlock E. Cascades 39 23 13 7
Mountain hemlock inland 40 23 13 7
Lodgepole pine Yellowstone 44 27 15 8
Spruce—fir with aspen 45 27 15 8
Spruce—fir without aspen 47 28 15 8
Spruce-fir wet 48 28 15 8
Spruce—fir WBP > LPP} 51 30 16 8
Spruce-fir LPP > WBP% 52 30 16 8
Whitebark pine/subalpine larch north 54 31 16 8
Whitebark pine/subalpine larch south 55 31 16 8

Note: Based on the dendrogram in Fig. 2.

+ More whitebark pine than lodgepole pine.
+ More lodgepole pine than whitebark pine.

weighted means were calculated at each partition. For
both types of models, the response variable was weight-
ed in the following ways:

1) Full data: sites that were cross-dated or had FRIs
computed from 10 or more trees were given a weight
of 1.0 (37 sites). Remaining sites with more than two
trees were given a weight of 0.5 (52 sites). Others were
weighted at 0.25 (96 sites).

TABLE 3. Numerical values at three levels of aggregation
for cover types, used to create numerical predictors in the
model database.

Cover type None One Two
Interior ponderosa pine 1 1 1
Pacific ponderosa pine 2 1 1
Sierra mixed conifer 4 2 1
Oregon white oak 7 4 2
Limber pine 9 5 2
Mixed conifer woodland 10 5 2
Interior Douglas-fir 15 9 5
Grand fir/white fir 16 9 5
Western larch 19 11 6
Lodgepole pine 20 11 6
Aspen 21 11 6
Western white pine 23 12 6
Shasta red fir 24 12 6
Western hemlock/western red cedar 28 15 8
Pacific silver fir 29 15 8
Mountain hemlock 32 17 9
Engelmann spruce/subalpine fir 33 17 9
Whitebark pine 35 18 9
Whitebark pine/subalpine larch 36 18 9

Note: Based on the dendrogram in Fig. 3.

2) Reduced data: sites that were cross-dated or had
FRIs computed from 10 or more trees were given a
weight of 1.0 (48 sites). All others were weighted at
0.5 (42 sites).

Multiple regression of FRI on predictors in the model
matrix.—We developed an exhaustive procedure that
tested combinations of the environmental variables
(PRECIP, AlbersN, AlbersE) with each set of numerical
values (corresponding to a level of aggregation in the
dendrogram) for the three ICRB vegetation classifi-
cations. We then used backward elimination (Neter et
al. 1990) to remove predictors that did not contribute
significantly (P > 0.05) to the reduction in variance.
The response variable was transformed as necessary to
meet the normality assumptions of regression, and a
Cook’s distance plot (Neter et al. 1990) was used to
identify and remove significant outliers. Once a model
was selected, we compared the output from robust re-
gression to that from ordinary regression.

To find the optimal transformation of the numerical
values for vegetation types, we compared a log, trans-
form to fitted exponents for the vegetation variables.
We used partially linear least squares (Bates and Lind-
strom 1986) to obtain the extra coefficient. For ex-
ample, a possible model form would be

log(FRI) = By + ... + B(COVH) + ... (1)

where all coefficients are linear except B,, .
Tree-based model of FRI on predictors in the model
matrix.—Tree-based models are a nonparametric alter-
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TABLE 4. Parameter estimates for the regression models.
Coefficient
Model Independent variable (1 sg) P
Full data (log, transform of response Intercept —-2.1175 0.0109
variable) (0.8226)
log(COVHI) 0.1526 0.0198
(0.0649)
AlbersN 3.0820 X 10-¢ <0.0001
(47924 X 1077)
Summer precipitation (PPTSUM) 1.2422 X 1072 0.0002
(3.2753 X 1073)
Elevation 2.7546 X 1073 <0.0001
(5.2565 X 104
Precipitation/elevation interaction —9.7262 X 10-° <0.0001
(2.4182 X 1079)
Reduced data (square-root transform Intercept —13.9152 0.0022
of response variable) (4.3992)
AlbersN 8.1725 X 10-¢ 0.0053
(2.8509 X 1079)
Summer precipitation (PPTSUM) 0.0814 <0.0001
(0.0168)
Elevation 9.8024 X 1073 0.0008
(2.8242 X 1073
Precipitation/elevation interaction —4.6789 X 10— 0.0005

(1.2978 X 10~°

Notes: COVHI refers to level aggregation ““One’” in Table 3. The intercept term for the full data is corrected for logarithmic

bias (Flewelling and Pienaar 1981).

native to linear models for regression problems (Brei-
man et al. 1984). They are fit by binary recursive par-
titioning, in which a data set is successively split into
increasingly homogeneous subsets, using a likelihood
criterion to maximize the reduction in deviance pro-
duced by each partition (Clark and Pregibon 1992).
Although they are often used as an exploratory tech-
nique for revealing structure in data, they can also be
used for prediction when predictors in a new database
fall within the range of predictors in the modeling da-
tabase. A particular advantage of tree-based models is
that they can capture nonadditive behavior and com-
plex interactions between variables, whereas standard
linear models are limited to prespecified multiplicative
interactions (Clark and Pregibon 1992). Response var-
iables that are factors produce classification trees,
whereas numerical response variables produce regres-
sion trees.

Our tree-based models were built from the same
model databases as the regression models. We used an
adaptive estimation method (Breiman et al. 1984) to
minimize the complexity of the model (number of
branches and nodes) without sacrificing goodness of
fit. We first fit an overly large tree, using two criteria
for deciding when a node should not be split: 1) if node
deviance is <1% of the root node deviance, or 2) if
the node has fewer than 10 observations. We then used
a cost-complexity measure derived by Breiman et al.
(1984) to prune the tree:

D(T) = D(T) + a(size(T) (2)
where

D(T;) = deviance of subtree T;

size(T;) = the number of terminal nodes of T;

o = a cost-complexity parameter.

For a specified a, the cost-complexity pruning im-
plemented in Splus minimizes D(T;) for all subtrees
of a tree 7. We determined o graphically by plotting
deviance against number of nodes as a step function.
The value of the cost-complexity parameter corre-
sponding to the flattening of this step function was
inserted in Eq. 2. Each subtree was pruned, beginning
at its terminal nodes, until the measured cost com-
plexity was minimized. Predictor variables on which
there were no partitions in the final pruned model were
thus eliminated.

Large-scale application of the models.—For each
variable in the final (tree-based or regression) models,
we created a raster coverage (GRID: 1-km resolution)
with data values only at forested pixels. A pixel was
considered forested if both its corresponding pixels in
the coverages of historical potential vegetation and of
dominant cover type coincided with the vegetation
types in Table 1. We exported these GRIDs to Splus
and used the tree-based and linear regression models
to predict the FRIs for the new data (all forested pixels
within the ICRB). We then imported the predicted val-
ues into ARC-INFO, creating four raster coverages of
predicted FRIs. Because tree-based models are inac-
curate when extrapolated beyond the range of model
databases, we eliminated pixels from the tree-based
GRID that corresponded to values of environmental
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TaABLE 5. Cover types (COVH) in the (complete) fire history database vs. the ICRB coarse-

scale vegetation coverage.

Number of sites
in fire history

Number of pixels
in ICRB (1 km)

Percentage of
total forested

Cover type database coverage pixels

Interior ponderosa pine 65 97762 31.2
Pacific ponderosa pine 0 2539 0.8
Sierra mixed conifer 0 872 0.3
Oregon white oak 0 481 0.2
Limber pine 0 263 0.1
Interior Douglas-fir 12 49786 15.9
Grand fir/white fir 7 4210 1.3
Western larch 32 21338 6.8
Lodgepole pine 42 67 347 21.5
Aspen 6 8888 2.8
Western white pine 7 10477 3.3
Shasta red fir 1 10 <0.1
Western hemlock/western red cedar 1 404 0.1
Pacific silver fir 0 123 <0.1
Mountain hemlock 0 824 0.3
Engelmann spruce/subalpine fir 19 30655 9.8
Whitebark pine 0 15120 4.8
Whitebark pine/subalpine larch 0 2108 0.7

Total 192 313207 100.0

variables outside those in the fire history databases
(elevation > 2550 m and annual precipitation > 2000
mm = 9% of total area excluded). We did not eliminate
any pixels based on vegetation type, however, because
all were within the range of numerical values of pre-
dictors from the FHDB (Tables 3 and 5).

Model evaluation

The evaluation of any statistical model typically ad-
dresses the following questions:

1) How well does the model fit the data and meet
assumptions?

2) How well does the model predict new observa-
tions?

We addressed Question 1 with standard diagnostics,
including plots of residuals against fitted values to iden-
tify heterogeneous variance, and quantile—quantile
plots to assess normality of residuals (Neter et al.
1990). Because the model databases were small and
very heterogeneous, we did not create a subset of the
database for testing. Instead, to answer Question 2, we
calculated a bootstrap estimate of prediction error (Ef-
ron and Tibshirani 1993) for the regression models,
and compared it to the model’s error sum of squares
(ssE). For the tree-based models we used 10-fold cross
validation to assess graphically the degree of pruning
that we applied to the model tree (Venables and Ripley
1994). However, because the purpose of our model was
to extrapolate local relationships to the regional scale,
there were two other questions we needed to address:

3) How well does the model database (point infor-
mation) represent the entire region?

4) How are model behavior and concomitant errors
propagated in the extrapolation process?

To answer Question 3, we compared the distributions
of predictor variables in the model database to those

in the regional database. For example, predictions for
a cover type that was abundantly represented in the
region, but only sparsely represented in, or absent from,
the model database, could be suspect. Conversely, pre-
dictions for a pixel whose environmental variables
were well within the range of the model database, and
whose cover type was abundantly represented therein,
could be accepted with more confidence. This proce-
dure also suggested which types of sites were likely
candidates for future fire history studies by virtue of
underrepresentation in the model database.

To answer questions 2 (at larger scales) and 4, we
produced statistical and graphical summaries of model
predictions at the 1-km scale, using two different levels
of aggregation of vegetation types: historical cover
types and aggregated Kiichler types (McKenzie et al.
1996¢ and Table 1). We examined the distribution of
predicted FRIs from both models for each vegetation
type for obvious anomalies, using the output maps and
histograms of FRIs for each vegetation type. For ex-
ample, we expected FRIs to be positively correlated
with latitude and elevation, and to observe differences
between types in mean and range. We also expected
that most predicted FRI distributions for vegetation
types would not display major discontinuities or dis-
tinctly multimodal patterns. This partly qualitative pro-
cedure suggested which of the models would be robust
to extrapolation.

Sensitivity analysis—We expected the principal
source of error in both the full and reduced data sets
to be the lack of accurate cross-dating for many of the
reconstructions that used fire scars. Dendrochronolog-
ical cross-dating greatly increases the probability that
tree ring records will be synchronized so that missing
or false rings will not distort the association of distinct



October 2000

events (e.g., as recorded by fire scars) with specific
years (Fritts and Swetnam 1986). Drought-sensitive
tree species are especially likely to have missing rings
(Dieterich and Swetnam 1984). In systems with short
FRIs, fire scar dates estimated by ring counting and
matching samples may differ from dates estimated by
cross-dating (Madany et al. 1982). Not only could sig-
nificant errors occur without cross-dating, but also con-
sistent biases could arise from the tendency of a par-
ticular researcher to be a ‘“‘lumper”’ or a ““splitter.”” For
example, lumpers might assume that fire scars that ap-
peared to be one or more years apart were actually from
the same fire, whether or not this was the case. Con-
versely, splitters might assume, trusting their ring
counts, that fire scars even one year apart always rep-
resented different fires.

To estimate the magnitude of errors, we simulated
increment cores with fire scars by creating time series
of random fire intervals. From rough calculations on
these, and discussions with fire ecologists, we con-
cluded that a typical error would be to underestimate
fire frequency by a factor of two. Less commonly, one
might overestimate by a factor of two. A simple ex-
ample of this would be two samples whose fire dates
appeared to be consistently out of synchrony by one
or two years, leading a lumper to assume that each pair
represented only one fire. To estimate the effects of this
and similar errors on the parameters and broad-scale
behavior of the models, we simulated a random cor-
rection factor that could be applied to noncross-dated
FRI estimates in the fire history database to account
for potential cross-dating errors. The factor was applied
differently in two scenarios:

1) Lumpers. This scenario assumes that estimates of
FRI will be high because researchers would tend to
adjust fire dates from different samples to be more
synchronized. The correction adjusted FRIs down, on
average, to half of their observed values.

2) Lumpers and splitters. This scenario assumes that
errors will be equally likely on either side of the orig-
inal. Corrected FRIs were higher (twice the observed)
or lower (half the observed), on average, with equal
probability.

Because the correction factor is a random variable
in both scenarios, every correction is unique, and every
realization of a set of corrections applied to the FRIs
is also unique. We applied each scenario 25 times to
both regression models and both tree-based models,
correcting only FRIs under 30 yr from noncross-dated
fire scars (Heyerdahl et al. 1995), and storing the pa-
rameter estimates and their p values, the fitted values,
and R? (regression models) and proportional reduction
in deviance (PRD) (tree-based models). We compared
these data to output from the original four models, and
randomly selected realizations (of regression models
only) to compare to model predictions at the regional
scale. We were particularly interested in the following
responses:
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1) Sensitivity of parameter estimates (regression
models) or order of partitions (tree-based models).

2) Major changes in the significance levels of pa-
rameter estimates (regression models) or deviance re-
ductions at splits on a particular parameter (tree-based
models).

3) Proportional changes in predicted values at the
regional scale.

RESULTS

For the full data, the best multiple regression model
uses four predictor variables (Table 4), is highly sig-
nificant (n = 182, P < 0.0001), and has reasonable
explanatory power (R? = 0.44). The model for the re-
duced data uses three predictors (Table 4), is also highly
significant (n = 87, P < 0.0001), and has better ex-
planatory power (R?> = 0.57). In both models, three
outliers were removed based on Cook’s distance. Signs
of coefficients, except for interaction terms, are posi-
tive, thus an increase in summer precipitation, latitude,
elevation, or the numerical value of COVHI1 increases
predicted FRI. Standard diagnostic procedures revealed
no violation of regression assumptions in either model,
and coefficients from the robust procedure are virtually
identical to those from ordinary regression. The range
of fitted values for FRI is 8-87 yr for the full data, and
3-124 yr for the reduced data. The bootstrap estimate
of prediction error (from 100 replicates) produced 6.5%
and 7.3% error inflation above ssSE for the full data and
reduced data models, respectively. The correlation
(Pearson’s R) between fitted values for the two regres-
sion models (on sites common to both) was 0.95.

The tree-based model for the full data, after pruning,
produced 16 distinct predicted values, ranging from 8
to 131 yr (Fig. 4a). The model uses the same four
variables as the full data regression model (minus the
interaction term; Table 4). The primary partition is on
AlbersN (latitude), which accounted for 49% of the
total reduction in deviance. The number of sites rep-
resented by terminal nodes ranges from 5 to 26. For
the reduced data, there are only 10 distinct predicted
values, ranging from 11-150 yr (Fig. 4b). The primary
partition is also on AlbersN, accounting for 70% of the
total reduction in deviance. The number of sites rep-
resented by terminal nodes ranges from 5 to 25. PRD
from both tree-based models (roughly equivalent to R?)
is 0.77; hence, they have greater explanatory power, in
the statistical sense, than the regression models. Cross
validation indicated that more severe pruning might
also be acceptable, but we wanted to retain as broad a
range, and as great a variety, of fitted values as possible
because of the number of predictions we were making
from the models. Therefore we retained all the nodes
remaining after the cost-complexity pruning.

Sensitivity analysis: model details

Parameter estimates in the regression models
changed little (maximum change less than 1% for any
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a)
AlbersN « 797711
:E_—'?} PPTSUM k 151.776 Elevation k 1256.25
Elevation|< 1524.5 Elevation|< 1572.5
77 130
Elevation k 1041.25 PPTSUMK 144.282 COVH1<5 AlbersN ¢ 694441
IbersN <{319282 Elevation < 1693.5 IbersN <[637610 AlbersN < 460270
12 8 18 98
AlbersN £ 268702 AlbersN k 536995
12 18 56 41 17 30
34 23 61 383
b)
AlbersN ¢ 797711
Elevation|< 1569.5 Elevation k 1443.75
PPTSUM|< 143.06 Elevation k 1742.75 Elevation k 1218.75
150
Elevation|< 1966.5
15 34 60 120 94
PPTSUMk 118.422 PPTSUM k 208.948
= S
30 11 53 32

FiG. 4. The final regression trees for (a) full data and (b) reduced data. Values at nodes are the predicted fire return
intervals, rounded to whole years. Significant digits reflect the resolution of the predictors. Predictions for a new site are
obtained by moving down the tree, branching left at a split if the site meets the rule, and branching right otherwise. In the
insets, trees are scaled to display the proportion of variance accounted for at each split. COVHI refers to the first level of

aggregation of COVH (Table 3).
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parameter) in either Scenario 1 or Scenario 2. For the
full data model, the highest fitted values from Scenario
1 were slightly lower on average (10%) than for the
“true”” model. For the reduced data model, the lowest
fitted values from Scenario 2 were 50% lower on av-
erage than for the true model. Other extrema of fitted
values differed <1% from the true models.

For the full data, model R? was consistently lower
by 12-15% in Scenario 1, and by 3-6% in Scenario 2.
For the reduced data, R2 was similar to that of the true
model, differing by <4%, for both scenarios. The pa-
rameter COVH]1 (full data only) lost significance, how-
ever, in 96% of the runs of Scenario 1 and 76% of the
runs of Scenario 2, indicating that this parameter may
not be very robust to cross-dating errors.

The tree-based models changed very little in either
scenario. Primary partitions remained on AlbersN,
PRDs changed only 1-5%, and no major structural
changes occurred. Fitted values at terminal nodes
changed <10%, and splits on the predictors were con-
sistent. For example, the partition of AlbersN at 797711
(Fig. 4) in both true models was retained through ail
iterations of both scenarios.

Model behavior

The total number of regional-scale predictions from
the models is three orders of magnitude greater than
the number of sample sites (Table 5). The regional
predictions cover a larger elevational range (49-3713
m) than the model database (727-2550 m). Because
COVHI1 was the vegetation variable represented in both
models, we used COVH types to organize summary
statistics for the models. There are eight COVH types
in the regional (forested) coverage that were not rep-
resented in the model database, although these account
for <8% of the total pixels. Predictions of FRI from
the regression models range from 1 to 375 yr at the
regional scale for the full data model, and 2 to 290 yr
for the reduced data model. Predictions from the tree-
based models are restricted to the 16 (full data) and 10
(reduced data) discrete values at the nodes of the re-
spective trees.

Viewed regionally, predictions from the regression
models reveal latitudinal gradients (Fig. 5). The gra-
dient is the dominant feature of the reduced data model
(Fig. 5a); the full data model predicts that the longest
FRIs will be in the northern Cascade Mountains, Wash-
ington, the Wind River Mountains, Wyoming, and in
the northwestern corner of Montana (Fig. 5b). Predic-
tions from the tree-based models display distinct hor-
izontal bands in addition to the latitudinal gradient (Fig.
6). These bands do not correspond to known biotic or
abiotic gradients and are artifacts of the dominance of
AlbersN in the partitioning process and of the limited
number of unique predicted values (16 and 10). When
separated by COVH type, most distributions of pre-
dictions from the regression model are unimodal and
right skewed, whereas predictions from the tree-based
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models, particularly the reduced data model, are dis-
tinctly bimodal, often with wide separations between
modes.

Sensitivity analysis: model behavior

At the regional scale, the predicted FRIs from re-
alizations in the sensitivity analysis (RSAs) closely
track those from the corresponding regression model.
Except for a few extreme outliers (<0.1% of pixels),
differences (true model: RSA) are <10 yr for all com-
parisons. Proportional differences are much greater in
cover types predicted to have short FRIs. For example,
for the full data, Scenario 1, the difference is between
1 and 7 yr on 95% of pixels that are ‘‘Interior ponderosa
pine,” and between —5 and 14 yr on 95% of pixels
that are ‘‘Engelmann spruce/subalpine fir.”” For the re-
duced data, Scenario 2, the corresponding differences
are between —3 and 1 yr for “Interior ponderosa pine”’
and between —6 and 2 yr for ‘““Engelmann spruce/sub-
alpine fir.”” As expected, RSAs from Scenario 1 con-
sistently predict shorter FRIs in ponderosa pine systems
(32% of total pixels) than the regression models, be-
cause in the lumpers scenario, FRIs for these sites in
the fire history database were assumed to have been
overestimated. However, this consistent bias is not ap-
parent for ‘“‘Interior Douglas-fir,”’ the other common
vegetation type for which many FRIs were reduced in
the RSAs, Scenario 1.

DIsSCUSSION

The models reveal highly significant relationships
between fire frequency and the predictor variables. The
data represented by the output maps provide new in-
formation, which will complement the ICRB assess-
ment and assist coarse-scale modeling efforts in the
region. In contrast to the coverages from the ICRB
assessment, which delineate five broad ranges of fire
frequency (Morgan et al. 1996), our models produce
estimates of fire frequency at the resolution of one year.
Also in contrast, the ICRB models assigned fire regime
classes to cover types (Hann et al. 1997), whereas our
models predict fire frequency principally from envi-
ronmental and geographic variables.

We expected the regression model to predict increas-
ing FRIs along both elevational (low to high) and lat-
itudinal (south to north) gradients, and a significant
positive correlation between FRI and PPTSUM, given
the obvious link between fuel moisture and flamma-
bility and extensive documentation of longer FRIs in
more mesic systems. The resolution of the PRISM cov-
erage (4 km) may be too coarse to capture fine-scale
fluctuations in precipitation that could have significant
differential effects on fuels and on fire ignition and
spread. Precipitation maps with finer resolution might
show an even stronger relationship with FRI. For ex-
ample, historical reconstructions of climate from tree
ring data (e.g., Fritts et al. 1979), collected at nearby
sites, could provide better predictors. Gridded dendro-
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FI1G. 5. Output maps of predicted fire return intervals from the regression models, displayed as a continuous gradation
of color over the predicted range for (a) reduced data and (b) full data.
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FIG. 6. Output maps of predicted fire return intervals from the tree-based models, collected into six categories. Red
shading shows the proportional area of the coverage in each category. (a) Reduced data: 5-25 yr = 30%, 26-45 yr = 33%,
46-65 yr = 24%, 66-85 yr = 0%, 86-105 yr = 2%, >105 yr = 11%. (b) Full data: 5-25 yr = 34%, 26-45 yr = 32%, 46—
65 yr = 14%, 66-85 yr = 6%, 86—-105 yr = 7%, >105 yr = 7%.
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climatic reconstructions (Cook et al. 1999) could then
be used for regional-scale predictions.

The negative coefficient for the elevation/precipi-
tation interaction in both regression models indicates
that at higher elevations, FRI is less strongly correlated
with precipitation than at low elevations. For example,
the models predict that the differences in FRI between
low-elevation ponderosa pine forests (drier) and low-
elevation cedar-hemlock forests (wetter) would be pro-
portionally greater than between high-elevation white-
bark pine forests (drier) and high-elevation mountain
hemlock forests (wetter). We expected that of the three
vegetation variables, COVH would be correlated most
strongly with FRI, because it represents vegetation pre-
sumed to be present during the period 1700-1920. It
also reflects the dominant successional process (fire).
COVHL1 is the best predictor of the vegetation types
(although it only appears in the full data model), re-
inforcing the idea that fire regimes in the ICRB could
be classified by aggregated vegetation types (see also
Morgan et al. 1996).

The tree-based and regression models serve com-
plementary purposes in understanding the relationships
among FRI and the predictor variables. Results of the
tree-based models suggest that more variation in the
response can be explained by exploring complex in-
teractions and dependencies among variables than can
be captured by an ordinary regression model (PRD =
0.77 vs. R? = 0.44 and 0.57). However, when extrap-
olated to 1-km resolution, the tree-based models pro-
duce horizontal bands of the same predicted values and
bimodal distributions of FRIs. These artifacts are due
to the sequential nature of the prediction process; once
a node has been passed, the choices are limited to those
further down the branch. The inability of tree-based
models to predict new values is also a significant draw-
back in extrapolations of this magnitude. Conversely,
the regression models, although they have weaker (sta-
tistical) explanatory power at the scale of the model
database, provide a simple and robust method of pre-
diction at the regional scale. Thus, although the tree-
based models show a better statistical fit, only the re-
gression models are suitable for broad-scale predic-
tions.

Of the two regression models, the reduced data mod-
el has a more homogeneous response variable, uses
only abiotic variables as predictors, and produces more
homogeneous predictions at the regional scale (domi-
nated by a broad latitudinal gradient; Fig. 5a). The full
data model incorporates vegetation, albeit weakly, and
isolates geographic areas of long FRIs independent of
the latitudinal gradient (Fig. 5b). Sensitivity analyses
suggest that errors in computing the response variable
would be slightly greater for the full data, and pro-
portionally greater in systems with short FRIs. In the
absence of data to systematically test the regional-scale
predictions, we suggest that predictions from the re-
duced data model are probably more accurate in sys-
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tems with short FRIs, because the percentage of non-
cross-dated sites is lower. Long FRIs are underrepre-
sented in the full database, but even more so in the
reduced database. For example, of 19 sites with cover
type “Engelmann spruce/subalpine fir,”” only one was
retained for the reduced data model. Therefore we ex-
pect that estimates of FRI for low fire frequency sys-
tems will be better from the full data model. The ICRB
model does not appear to produce any latitudinal gra-
dient, probably because it is focused on vegetation
types and broad classes of fire frequency. Our full data
model displays both the broad gradient and isolated
areas of high FRIs, while our reduced data model dis-
plays only environmental/geographic gradients.

Aggregation error, spatial heterogeneity, and the
reliability of the models

Applying the tree-based models at coarse scales in-
troduces a common form of error in data aggregation.
When relationships among variables are nonlinear,
characterization of data by simple means will produce
consistent errors when relationships are extrapolated
across scales (O’Neill 1979, King et al. 1991, Rastetter
et al. 1992, Cale 1995, O’Neill 1998). The tree-parti-
tioning process equates predicted values of the re-
sponse to its mean over increasingly homogeneous sub-
sets of the predictors (Clark and Pregibon 1992). This
retains features of the raw data at the scale of modeling,
but the discontinuities are magnified such that the pro-
portion of extreme values is exaggerated at the scale
of prediction because ‘‘mistakes’ at any split are prop-
agated down through the tree. The regression models
provide a rougher approximation of patterns in the orig-
inal data, but as linear functions, are more robust to
aggregation error. The distributions of predictions from
these models will have errors associated with them, but
their smoothness suggests a lack of interference from
model artifacts in the extrapolation process.

Patterns of spatial heterogeneity affect the connec-
tivity of landscapes with respect to fire, and thus in-
troduce biases into estimates of fire frequency (Lertz-
man et al. 1998). The 1-km vegetation classifications
and digital elevation model mask considerable spatial
heterogeneity in vegetation and topography. Applying
the models at this scale implicitly produces a constant
FRI over 1 km?, but the patterns of landforms and veg-
etation within the pixel exert considerable influence on
fire severity and spread, resultant fire size, and thus
expected FRI (Agee 1998). For example, local cold-air
drainages can favor narrow corridors of vegetation
characteristic of higher elevations in a matrix of drier,
low-elevation vegetation (Agee et al. 1990). Depending
on the connectivity of the landscape, FRIs in the cor-
ridors and matrix in this context may be identical, or
at least more similar than could be expected if they
were spatially disjunct.

The models could be improved by additional fire
history information for the ICRB, particularly if data
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collection and interval estimation were standardized,
providing better confidence to FRI estimates in model
databases. Cross-dating all tree ring records would sig-
nificantly improve the accuracy of the response vari-
able. Although our sensitivity analysis covered two
broad categories of cross-dating errors, there are many
possibilities, and it is difficult to know in advance what
type of errors are likely in a given reconstruction. Some
fire history studies should be initiated specifically to
improve regional scale models, and to test predictions
of models like ours. A sparse grid of fire history sites
could include more vegetation types and be amenable
to rigorous quantitative methods of spatial aggregation
(Dutilleul 1993, Legendre 1993, Rossi et al. 1993).
Future efforts should be concentrated in systems that
are currently underrepresented in the model database
vs. the regional database, namely high-elevation forests
(above 2550 m) supporting low frequency/high severity
fire regimes (dominant species are whitebark pine, sub-
alpine larch, mountain hemlock, Pacific silver fir; Table 5).

Model applications

Only the regression models should be applied at
broad scales, because they are evidently robust to ex-
trapolation errors. We envision three applications for
the regression models, while recognizing that they need
to be continually revised as more fire history data are
made available. Predictions for individual sites should
also be viewed with caution, or given confidence in-
tervals of 5-10 yr on either side, because of the uneven
quality of the FHDB.

First, the models provide estimates -of FRIs at one-
year resolution where only estimated ranges existed
previously. Most pixels on the output map have no
associated fire history data. Although the limits im-
posed by the coarse resolution mean that the models
will be less useful for fine-scale than for broad-scale
applications, local managers may be able to integrate
model predictions with local qualitative data and
knowledge about systems similar to theirs to better
estimate the historical range of variability of fire re-
gimes (Morgan et al. 1994, Landres et al. 1999, Swet-
nam et al. 1999). For example, in forests that histori-
cally experienced high frequency, low severity fires,
maps of historical FRIs provide input for decadal-scale
planning that includes prescribed burns and comple-
mentary silvicultural treatments. Similarly, in forests
that experienced low frequency, high severity fires, the
maps, in combination with records of fire sizes, can
suggest the minimum dynamic area (Pickett and
Thompson 1978) and appropriate temporal scales for
management plans (Hobbs 1998). In heterogeneous ter-
rain where the 1-km scale predictions are too coarse
to be of direct use, understanding the importance of
environmental gradients and their interactions for fire
frequency may help explain observed differences in fire
frequency at finer scales. Model predictions can also
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be added to broader ecological inventories designed to
assist ecosystem management (Keane et al. 1996b).

Second, the models provide new data to initialize
spatially explicit, coarse-scale simulation models of
fire behavior, fire effects, and succession. In mecha-
nistic models (e.g., Keane et al. 1996¢), predicted FRI
values at each pixel could be used directly or taken as
means of candidate distributions such as the Weibull
(Johnson and Gutsell 1994) from which input FRIs
could be chosen randomly. In cell-based models of dis- -
turbance on abstract landscapes (e.g., Turner et al.
1989, Turner and Romme 1994), patterns of FRIs taken
from the regional map could be incorporated into mea-
sures of landscape connectivity and of how that con-
nectivity changes over time.

Third, our approach demonstrates a methodology for
integrating existing data and making coarse-scale pre-
dictions that is relatively robust to aggregation error.
Coarse-scale modeling will probably need to incor-
porate semiqualitative elements for the foreseeable fu-
ture (Keane and Long 1998, McKenzie 1998). Our re-
sults suggest that heuristic, knowledge-based methods
(quantifying vegetation types) and rigorous statistical
methods can be successfully combined.

Finally, the tree-based models suggest that a quan-
titative understanding of how variables interact differ-
ently in different parts of their ranges should improve
the explanatory power of models. They can also gen-
erate hypotheses about how different combinations of
variables affect fire frequency in different systems. For
example, are factors associated with latitude (e.g.,
growing season length) more significant for under-
standing differences in fire frequency at certain ele-
vations and under certain climatic regimes? More gen-
erally, are there threshold values of variables across
which their effects on fire change rapidly? Understand-
ing such discontinuous behavior in ecological systems
will undoubtedly improve our ability to make predic-
tions about their future states (O’Neill 1979) and the
ability of fire managers to anticipate changes in fire
effects and the consequences for forest ecosystems.

Future directions

The success of qualitative methods depends on the
robustness of a knowledge-based approach (Schmoldt
and Rauscher 1995). Keane et al. (1996a) used a set
of transition rules, based on expert knowledge, to mod-
el successional pathways in a regional-scale simulation
model. Similarly, we used a qualitative clustering
method to approximate the numerical contribution of
vegetation types to estimates of FRI (Figs. 3 and 4).
Improvements in vegetation databases, however, might
allow approaches like ours to be fully quantitative.
Vegetation classifications are frequently subjective or
based on broad qualitative rules (Holdridge 1947, Kii-
chler 1964, Eyre 1980, Bailey 1996), but more empir-
ical classifications are possible (Hargrove and Lux-
moore 1998). These can be expressed probabilistically,
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in terms of fuzzy set membership (Roberts 1996). Do-
ing so could alleviate the worst aspects of the aggre-

gation problem. For example, a pixel that is classified

as ““Pacific silver fir” at the 1-km scale would be ex-
pected to have a different fire history if it were com-
posed of 100% Pacific silver fir vs. 60% Pacific silver
fir and 40% Douglas-fir (Agee et al. 1990).

Landscape heterogeneity, including topography and
the patchiness of vegetation and fuels, constrains fire
sizes and therefore the expected extent of spatial au-
tocorrelation of FRIs (Turner and Romme 1994, Agee
1998, Lertzman et al. 1998, Miller and Urban 1999).
We were unable to discern spatial autocorrelation
among the sites in the existing fire history database,
but new sampling designs for fire history reconstruc-
tions might address this problem. For example, if grids
were established to measure point FRIs in different
systems, autocorrelation structure could be more easily
determined, and interpolated values could be compared
to predictions from a model that assumes indepen-
dence, providing a check on the reliability of models
like ours.

Ecosystem management is being applied under hi-
erarchical frameworks at multiple spatial scales (Quig-
ley et al. 1996, Sierra Nevada Ecosystem Project 1996,
Johnson et al. 1999). For example, the ICRB Ecosystem
Management Project is modeling forest succession and
disturbance at the regional scale, using semiquantita-
tive methods, and at the watershed scale, using mech-
anistic models (Haynes et al. 1996). Informed decisions
are needed at increasingly broad spatial scales, but in
most cases, detailed quantitative data are not available.
Integration of existing databases, complementary use
of qualitative and quantitative methods, resolution of
scale incompatibilities in spatial data (Quattrochi and
Goodchild 1997), and more efficient approaches to data
collection will improve our understanding of broad-
scale interactions among fire, vegetation, and the phys-
ical environment.
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